

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE		
QUALIFICATION CODE: 07BOSC		LEVEL: 6
COURSE CODE: EAM601S		COURSE NAME: ELECTRICITY AND MAGNETISM
SESSION: JUNE 2023		PAPER: THEORY
DURATION: 3 HOURS		MARKS: 100
FIRST OPPORTUNITY EXAMINATION PAPER		
EXAMINER (S)	PROF MUNAWAR KARIM	
MODERATOR:	DR VAINO INDONGO	
•		
INSTRUCTIONS		
 Write all your answers in the answer booklet provided. Read the whole question before answering. 		

PERMISSIBLE MATERIALS

Scientific Calculator

3. Begin each question on a new page.

THIS PAPER CONSISTS OF 3 PAGES

Electricity and Magnetism Final Examination June 2023

1) In the diagram below there is a collection of charges. + means +q and – means -q. What is the flux through the surface of the sphere? Recall flux $\Phi_E = \oint \vec{E} \cdot \overrightarrow{da}$. (20 points)

- 2) Given a uniformly charged sphere of radius R and charge Q: (10 points)
 - a) Calculate the *E*-field inside the sphere (3 points)
 - b) Calculate the *E*-field outside the sphere (3 points)
 - c) Draw a graph of the E-field both inside and outside the sphere (2 points)
 - d) Identify points where the field is maximum and minimum. There is more than one point where the field is minimum.
 (2 points)
- 3) Two point-charges Q_1 and Q_2 are separated by a distance r. (10 points)
 - a) What is the effect on the force between the charges if Q_1 is changed to $2Q_1$? (4 points)
 - b) What is the effect on the force between the charges if r is changed to 2r? (4 points)
 - c) What is the force as $r \to \infty$? (2 points)
- 4) You are required to measure an unknown charge Q. (20 points)
 - a) Set up a force balance with two identically charged spheres each carrying a charge Q and of mass m suspended from two light strings of length l. (5 points)

- b) Draw a free-body diagram depicting equilibrium between the tension on the string \vec{T} , weight $m\vec{g}$ and the Coulomb force \vec{F} . Using Newton's Second law write a vector equation depicting equilibrium. (5 points)
- c) Equate vertical and horizontal components of the three forces. (5 points)
- d) Solve the equations for the force in terms of l, m and g. (2 points)
- e) From the force calculate the unknown charge in terms of l,m and g. Let a=0.2m, l=1.0m, m=0.005 $kg, k=9\times 10^9, g=9.80$ m/s^2 . (3 points)
- 5) Two charges $q_1=2nC$ and $q_2=+0.25nC$ are located on the x-axis separated by 0.3m. A third charge $q_3=-0.5nC$ is also placed on the x-axis. (20 points)
 - a) Set up the equation for the forces acting on q_3 due to q_1 and q_2 . (10 points)
 - b) Find the locations (two solutions) on the x-axis where the force on $q_3=0.$ (10 points)
- 6) A solid conductor of radius R carries a current I along its axis.
 - a) Using Ampere's law calculate the B-field inside the conductor. Show the direction of the B-field. (10 points)
 - b) The B-field outside the conductor. Show the direction of the B-field. (5 POINTS)
 - c) For values of R=0.01m, I=10A, locate and calculate the maximum B-field. Use $\mu_0=4\pi\times 10^{-7}H/m. \tag{5 POINTS}$

